OFFSET
1,2
COMMENTS
a(n) is row 30 of Table A128629 and can be generated by multiplying rows
two, three and five (or any other combination of rows with a row number product of 30).
LINKS
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
G.f.: -x*(1+17*x+33*x^2+9*x^3)/(x-1)^7.
From Amiram Eldar, Feb 13 2023: (Start)
Sum_{n>=1} 1/a(n) = 153/4 - 9*Pi^2/2 + 6*zeta(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 48*log(2) - 141/4 - Pi^2/4 + 9*zeta(3)/2. (End)
EXAMPLE
MATHEMATICA
a[n_] := n^3*(n+1)^2*(n+2)/12; Array[a, 35] (* Amiram Eldar, Feb 13 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alford Arnold, Sep 06 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Sep 09 2009
STATUS
approved