login
A165186
a(n) = Sum_{k=1..n} (k*(n-k) mod n).
0
0, 1, 4, 6, 10, 17, 28, 36, 30, 45, 66, 82, 78, 105, 140, 136, 136, 141, 190, 230, 238, 253, 322, 380, 250, 325, 360, 434, 406, 505, 558, 592, 572, 561, 700, 678, 666, 741, 910, 980, 820, 917, 946, 1122, 1050, 1173, 1316, 1432, 1078, 1125, 1394, 1430, 1378, 1449
OFFSET
1,3
COMMENTS
Comment from Max Alekseyev, Nov 22 2009: For a prime p==3 (mod 4), a(p) = p*h(-p) + p*(p-1)/2 where h(-p) is the class number (listed in A002143). For example, h(-19)=1 and a(19) = 19*1 + 19*18/2 = 190.
MATHEMATICA
Table[Sum[Mod[k (n-k), n], {k, n}], {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Sep 06 2009
STATUS
approved