login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A165134 Number of knight's paths visiting each square of an nxn chessboard exactly once. 5

%I

%S 1,0,0,0,1728,6637920,165575218320,19591828170979904

%N Number of knight's paths visiting each square of an nxn chessboard exactly once.

%H Stefan Behnel, <a href="http://www.behnel.de/knight.html">The Knight's Paths</a>

%H A. Chernov, <a href="http://alex-black.ru/article.php?content=141">Open knight's tours</a>

%H P. Hingston, G. Kendall, <a href="http://dx.doi.org/10.1109/CEC.2005.1554800">Enumerating knight's tours using an ant colony algorithm</a>, The 2005 IEEE Congress on Evolutionary Computation, 2 (2006), 1003-1010

%H G. Stertenbrink, <a href="http://magictour.free.fr/enum">Number of Knight's Tours</a>

%H Gheorghe Coserea, <a href="/A165134/a165134.txt">Solutions for 5x5 chessboard</a>

%e From _Gheorghe Coserea_, Oct 08 2016: (Start)

%e For n=5 the numbers in the table below give the number of knight's paths starting at the respective position on the 5x5 chessboard. In total there are a(5) = 304*4 + 56*8 + 64 = 1728 solutions.

%e [1] [2] [3] [4] [5]

%e [1] 304 0 56 0 304

%e [2] 0 56 0 56 0

%e [3] 56 0 64 0 56

%e [4] 0 56 0 56 0

%e [5] 304 0 56 0 304

%e (End)

%Y Cf. A118067, A079137, A083386, A001230.

%K nonn,hard,more

%O 1,5

%A [No name given] (c.candide(AT)free.fr), Sep 04 2009

%E a(7) from Guenter Stertenbrink, added by _Alex Chernov_, Sep 01 2013

%E a(1)=1, a(2)=0 prepended by _Max Alekseyev_, Sep 22 2013

%E a(8) from _Alex Chernov_, May 10 2014

%E Definition clarified by _Jonathan Sondow_, Nov 17 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 14 21:33 EST 2017. Contains 296020 sequences.