login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A165134 Number of knight's paths visiting each square of an nxn chessboard exactly once. 5

%I

%S 1,0,0,0,1728,6637920,165575218320,19591828170979904

%N Number of knight's paths visiting each square of an nxn chessboard exactly once.

%H Stefan Behnel, <a href="http://www.behnel.de/knight.html">The Knight's Paths</a>

%H A. Chernov, <a href="http://alex-black.ru/article.php?content=141">Open knight's tours</a>

%H P. Hingston, G. Kendall, <a href="http://dx.doi.org/10.1109/CEC.2005.1554800">Enumerating knight's tours using an ant colony algorithm</a>, The 2005 IEEE Congress on Evolutionary Computation, 2 (2006), 1003-1010

%H G. Stertenbrink, <a href="http://magictour.free.fr/enum">Number of Knight's Tours</a>

%H Gheorghe Coserea, <a href="/A165134/a165134.txt">Solutions for 5x5 chessboard</a>

%e From _Gheorghe Coserea_, Oct 08 2016: (Start)

%e For n=5 the numbers in the table below give the number of knight's paths starting at the respective position on the 5x5 chessboard. In total there are a(5) = 304*4 + 56*8 + 64 = 1728 solutions.

%e [1] [2] [3] [4] [5]

%e [1] 304 0 56 0 304

%e [2] 0 56 0 56 0

%e [3] 56 0 64 0 56

%e [4] 0 56 0 56 0

%e [5] 304 0 56 0 304

%e (End)

%Y Cf. A118067, A079137, A083386, A001230.

%K nonn,hard,more

%O 1,5

%A [No name given] (c.candide(AT)free.fr), Sep 04 2009

%E a(7) from Guenter Stertenbrink, added by _Alex Chernov_, Sep 01 2013

%E a(1)=1, a(2)=0 prepended by _Max Alekseyev_, Sep 22 2013

%E a(8) from _Alex Chernov_, May 10 2014

%E Definition clarified by _Jonathan Sondow_, Nov 17 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 17:41 EDT 2018. Contains 313880 sequences. (Running on oeis4.)