login
A165125
Number of n-digit fixed points under the base-9 Kaprekar map A165110
7
1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 2, 2, 3, 2, 2, 1, 4, 2, 3, 2, 3, 3, 4, 2, 3, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 6, 5, 7, 6, 7, 6, 6, 6, 8, 6, 7, 7, 8, 8, 8, 7, 7, 9, 8, 8
OFFSET
1,14
FORMULA
Conjectures from Chai Wah Wu, Apr 13 2024: (Start)
a(n) = a(n-2) - a(n-3) + a(n-5) - a(n-6) + a(n-8) + a(n-15) - a(n-17) + a(n-18) - a(n-20) + a(n-21) - a(n-23) for n > 24.
G.f.: x*(x^23 + x^22 - x^21 + x^20 + 2*x^19 - x^18 + x^17 + 3*x^16 - 2*x^15 + 3*x^13 - x^12 + 2*x^10 - x^9 + 2*x^7 - x^5 + x^4 + x^3 - x^2 + 1)/(x^23 - x^21 + x^20 - x^18 + x^17 - x^15 - x^8 + x^6 - x^5 + x^3 - x^2 + 1). (End)
CROSSREFS
In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A008615 (base 3), A165027 (base 4), A008617 (base 5), A165066 (base 6), A008722 (base 7, conjecturally), A165105 (base 8), A164733 (base 10).
Sequence in context: A133114 A156265 A232992 * A235187 A029333 A029261
KEYWORD
base,nonn
AUTHOR
Joseph Myers, Sep 04 2009
STATUS
approved