login
A165027
Number of n-digit fixed points under the base-4 Kaprekar map A165012
8
1, 0, 1, 1, 0, 3, 1, 3, 3, 5, 3, 8, 5, 9, 8, 12, 9, 16, 12, 18, 16, 22, 18, 27, 22, 30, 27, 35, 30, 41, 35, 45, 41, 51, 45, 58, 51, 63, 58, 70, 63, 78, 70, 84, 78, 92, 84, 101, 92, 108, 101, 117, 108, 127, 117, 135, 127, 145, 135, 156, 145, 165, 156, 176, 165, 188, 176, 198
OFFSET
1,6
FORMULA
Conjectures from Chai Wah Wu, Apr 13 2024: (Start)
a(n) = 2*a(n-2) + a(n-3) - a(n-4) - 2*a(n-5) + a(n-7) for n > 8.
G.f.: x*(x^7 - x^6 - 2*x^5 + x^4 + x^2 - 1)/((x - 1)^3*(x + 1)^2*(x^2 + x + 1)). (End)
CROSSREFS
In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A008615 (base 3), A008617 (base 5), A165066 (base 6), A008722 (base 7, conjecturally), A165105 (base 8), A165125 (base 9), A164733 (base 10).
Sequence in context: A145015 A085723 A186422 * A342341 A078555 A259286
KEYWORD
base,nonn
AUTHOR
Joseph Myers, Sep 04 2009
STATUS
approved