login
A165025
Number of cycles of n-digit numbers (including fixed points) under the base-4 Kaprekar map A165012.
11
1, 0, 1, 2, 1, 3, 1, 4, 3, 5, 4, 8, 5, 10, 8, 12, 10, 16, 12, 19, 16, 22, 19, 27, 22, 31, 27, 35, 31, 41, 35, 46, 41, 51, 46, 58, 51, 64, 58, 70, 64, 78, 70, 85, 78, 92, 85, 101, 92, 109, 101, 117, 109, 127, 117, 136, 127, 145, 136, 156, 145, 166, 156, 176, 166, 188, 176
OFFSET
1,4
LINKS
H. Hanslik, E. Hetmaniok, I. Sobstyl, et al., Orbits of the Kaprekar's transformations-some introductory facts, Zeszyty Naukowe Politechniki Śląskiej, Seria: Matematyka Stosowana z. 5, Nr kol. 1945; 2015.
FORMULA
Conjectures from Colin Barker, Jun 01 2017: (Start)
G.f.: x*(1 - x^2 + x^3 - 2*x^6 + 3*x^8 - x^10) / ((1 - x)^3*(1 + x)^2*(1 + x + x^2)).
a(n) = 2*a(n-2) + a(n-3) - a(n-4) - 2*a(n-5) + a(n-7) for n>7.
(End)
CROSSREFS
In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A165006 (base 3), A165045 (base 5), A165064 (base 6), A165084 (base 7), A165103 (base 8), A165123 (base 9), A164731 (base 10).
Sequence in context: A098910 A291323 A290988 * A225045 A361736 A278575
KEYWORD
base,nonn
AUTHOR
Joseph Myers, Sep 04 2009
STATUS
approved