This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164977 Numbers m such that the set {1..m} has only one nontrivial decomposition into subsets with equal element sum. 10
 3, 4, 5, 6, 10, 13, 22, 37, 46, 58, 61, 73, 82, 106, 157, 166, 178, 193, 226, 262, 277, 313, 346, 358, 382, 397, 421, 457, 466, 478, 502, 541, 562, 586, 613, 661, 673, 718, 733, 757, 838, 862, 877, 886, 982, 997, 1018, 1093, 1153, 1186, 1201, 1213, 1237, 1282 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers m such that m*(m+1)/2 has exactly two divisors >= m. Also numbers m such that m*(m+1)/2 is the product of two primes. LINKS T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe) FORMULA { m :  A035470(m) = 2 }. { m :  A164978(m) = 2 }. { m : |{d|m*(m+1)/2 : d>=m}| = 2 }. { m :  m*(m+1)/2 in {A068443} }. { m :  m*(m+1)/2 in {A001358} }. { m :  A069904(m) = 2 }. EXAMPLE 10 is in the sequence, because there is only one nontrivial decomposition of {1..10} into subsets with equal element sum: {1,10}, {2,9}, {3,8}, {4,7}, {5,6}; 11|55. 13 is in the sequence with decomposition of {1..13}: {1,12}, {2,11}, {3,10}, {4,9}, {5,8}, {6,7}, {13}; 13|91. MAPLE a:= proc(n) option remember; local k;       for k from 1+ `if`(n=1, 2, a(n-1))       while not (isprime(k) and isprime((k+1)/2)               or isprime(k+1) and isprime(k/2))       do od; k     end: seq(a(n), n=1..100); MATHEMATICA Select[Range@1304, PrimeOmega[#] + PrimeOmega[# + 1] == 3 &] (* Robert G. Wilson v, Jun 28 2010 and updated Sep 21 2018 *) PROG (PARI) is(n)=if(isprime(n), bigomega(n+1)==2, isprime(n+1) && bigomega(n)==2) \\ Charles R Greathouse IV, Sep 08 2015 CROSSREFS Cf. A164978, A035470, A068443, A069904, A001358. Sequence in context: A219041 A218946 A174057 * A103033 A099561 A110300 Adjacent sequences:  A164974 A164975 A164976 * A164978 A164979 A164980 KEYWORD nonn AUTHOR Alois P. Heinz, Sep 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 24 16:16 EDT 2019. Contains 326295 sequences. (Running on oeis4.)