This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164961 Triangle read by rows: T[n,m] = quadruple factorials A001813(n) * binomials A007318(n,m) 1

%I

%S 1,2,2,12,24,12,120,360,360,120,1680,6720,10080,6720,1680,30240,

%T 151200,302400,302400,151200,30240,665280,3991680,9979200,13305600,

%U 9979200,3991680,665280,17297280,121080960,363242880,605404800,605404800

%N Triangle read by rows: T[n,m] = quadruple factorials A001813(n) * binomials A007318(n,m)

%C Row sums give A052714 [From _Tilman Neumann_, Sep 07 2009]

%C Triangle T(n,k), read by rows, given by (2, 4, 6, 8, 10, 12, 14, ...) DELTA ((2, 4, 6, 8, 10, 12, 14, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Jan 07 2012

%H <a href="http://www.tilman-neumann.de/science.html">More terms</a> [From _Tilman Neumann_, Sep 07 2009]

%F T(n,k) = A085881(n,k)*2^n. - _Philippe Deléham_, Jan 07 2012

%F Recurrence equation: T(n+1,k) = (4*n+2)*(T(n,k) + T(n,k-1)). - _Peter Bala_, Jul 15 2012

%F E.g.f.: 1/sqrt(1-4*x-4*xy). - _Peter Bala_, Jul 15 2012

%e Triangle begins :

%e 1

%e 2, 2

%e 12, 24, 12

%e 120, 360, 360, 120

%e 1680, 6720, 10080, 6720, 1680

%Y Cf. A084938, A085881

%K nonn,tabl

%O 0,2

%A _Tilman Neumann_, Sep 02 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.