login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164958 Primes p with the property that if p/3 is in the interval (p_m, p_(m+1)), where p_m>=3 and p_k is the k-th prime, then the interval (3p_m, p) contains a prime 2
2, 3, 5, 13, 19, 29, 31, 43, 47, 61, 67, 73, 79, 83, 101, 103, 107, 109, 137, 139, 151, 157, 167, 173, 181, 193, 197, 199, 229, 233, 241, 257, 263, 271, 277, 281, 283, 313, 317, 349, 353, 359, 367, 373, 379, 389, 401, 409, 431, 433, 439, 443, 461, 463, 467, 487, 499 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For k>1 (not necessarily integer), we call a Labos k-prime L_n^(k) the prime a_k(n) which is the smallest number such that pi(a_k(n)) - pi(a_k(n)/k)= n. Note that, the sequence of all primes corresponds to the case of "k=oo". Let p be a k-Labos prime, such that p/k is in the interval (p_m, p_(m+1)), where p_m>=3 and p_n is the n-th prime. Then the interval (k*p_(m), p) contains a prime. Conjecture. For every k>1 there exist non-k-Labos primes, which possess the latter property. For example, for k=2, the smallest such prime is 131. Problem. For every k>1 to estimate the smallest non-k-Labos prime, which possess the latter property. [From Vladimir Shevelev, Sep 02 2009]

All 3-Labos primes are in this sequence.

LINKS

Table of n, a(n) for n=1..57.

EXAMPLE

If p=61, the p/3 is in the interval (19, 23); we see that the interval (57, 61) contains a prime (59). Thus 61 is in the sequence.

MATHEMATICA

nn=1000; t=Table[0, {nn+1}]; s=0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/3], s--]; If[s<=nn && t[[s+1]]==0, t[[s+1]]=k], {k, Prime[3*nn]}]; Rest[t]

CROSSREFS

Cf. A104272, A080359, A164952, A164368, A164288, A164294

Sequence in context: A157976 A155738 A215371 * A145908 A173830 A224223

Adjacent sequences:  A164955 A164956 A164957 * A164959 A164960 A164961

KEYWORD

nonn

AUTHOR

Vladimir Shevelev, Sep 02 2009

EXTENSIONS

Extended by T. D. Noe, Nov 23 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 17 14:59 EST 2014. Contains 252022 sequences.