login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164900 a(2n) = 4*n*(n+1) + 3; a(2n+1) = 2*n*(n+2) + 3. 2
3, 3, 11, 9, 27, 19, 51, 33, 83, 51, 123, 73, 171, 99, 227, 129, 291, 163, 363, 201, 443, 243, 531, 289, 627, 339, 731, 393, 843, 451, 963, 513, 1091, 579, 1227, 649, 1371, 723, 1523, 801, 1683, 883, 1851, 969, 2027, 1059, 2211, 1153 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) = largest odd divisor of A059100(n+1). Proof: Observe that a(2n) = A059100(2n+1) and a(2n+1) = (A059100(2n+2))/2 and note that (A059100(m))/2 is odd for even m. - Jeremy Gardiner, Aug 25 2013

a(n) is also the denominator of the (n+1)-st largest circle in a special case of the Pappus chain inspired by the Yin-Yang symbol. See illustration in the links. - Kival Ngaokrajang, Jun 20 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Kival Ngaokrajang, Illustration of initial terms.

Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1)

FORMULA

a(2n) = A164897(n); a(2n+1) = A058331(n+1).

a(n) = A164845(n-1)/A026741(n), n>0.

G.f.: ( -3-3*x-2*x^2-3*x^4-x^5 ) / ( (x-1)^3*(1+x)^3 ). - R. J. Mathar, Jan 21 2011

a(n) = ((-1)^n+3)*(n^2+2*n+3)/4. - Bruno Berselli, Jan 21 2011

From Amiram Eldar, Aug 09 2022: (Start)

a(n) = numerator(((n+1)^2 + 2)/2).

Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(2))*Pi/sqrt(2) + tanh(Pi/sqrt(2))*Pi/(2*sqrt(2)) - 1)/2. (End)

MATHEMATICA

LinearRecurrence[{0, 3, 0, -3, 0, 1}, {3, 3, 11, 9, 27, 19}, 50] (* Amiram Eldar, Aug 09 2022 *)

PROG

(Magma) [((-1)^n+3)*(n^2+2*n+3)/4: n in [0..50]]; // Vincenzo Librandi, Aug 07 2011

(PARI) vector(100, n, n--; (1/4)*((-1)^n+3)*(n^2+2*n+3)) \\ Derek Orr, Jun 27 2015

CROSSREFS

Cf. A026741, A058331, A059100, A164845, A164897.

Sequence in context: A309692 A107229 A302510 * A304082 A122167 A095019

Adjacent sequences: A164897 A164898 A164899 * A164901 A164902 A164903

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Aug 30 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 10:03 EST 2022. Contains 358630 sequences. (Running on oeis4.)