%I #12 Nov 03 2016 05:33:15
%S 1,101,1,10100,102,1,1010000,10202,103,1,101000000,1020202,10305,104,
%T 1,10100000000,102020202,1030507,10409,105,1,1010000000000,
%U 10202020202,103050709,1040916,10514,106,1,101000000000000,1020202020202
%N Generalized Lucas-Pascal triangle: (101*100^n,1)
%F T(0,0)=1, T(n+1,0)=101*100^n, T(n,n)=1, T(n,k)=T(n-1,k-1)+T(n-1,k) for 0<k<n. - _Philippe Deléham_, Dec 27 2013
%e Triangle begins:
%e 1
%e 101,1
%e 10100,102,1
%e 1010000,10202,103,1
%e 101000000,1020202,10305,104,1
%e 10100000000,102020202,1030507,10409,105,1
%e 1010000000000,10202020202,103050709,1040916,10514,106,1
%e 101000000000000,1020202020202,10305070911,104091625,1051430,10620,107,1
%p A164855 := proc(n,k)
%p option remember;
%p if n=k then
%p 1;
%p elif k>n or k<0 then
%p 0;
%p elif k = 0 then
%p 101*100^(n-1) ;
%p else
%p procname(n-1,k-1)+procname(n-1,k) ;
%p end if;
%p end proc:
%p seq(seq(A164855(n,k),k=0..n),n=0..12) ; # _R. J. Mathar_, Nov 03 2016
%Y Cf. A164847, A164851, A029635, A228196.
%K nonn,tabl,easy
%O 0,2
%A _Mark Dols_, Aug 28 2009
%E Initial 1 added by _Philippe Deléham_, Dec 27 2013