Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Nov 03 2024 02:07:30
%S 3,8,6,16,12,32,24,64,48,128,96,256,192,512,384,1024,768,2048,1536,
%T 4096,3072,8192,6144,16384,12288,32768,24576,65536,49152,131072,98304,
%U 262144,196608,524288,393216,1048576,786432,2097152,1572864,4194304,3145728
%N a(n) = 2*a(n-2) for n > 2; a(1) = 3, a(2) = 8.
%C Interleaving of A007283 and A000079 without initial terms 1, 2, 4.
%C Binomial transform is A164303.
%H Vincenzo Librandi, <a href="/A164654/b164654.txt">Table of n, a(n) for n = 1..100</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,2).
%F a(n) = (7+(-1)^n)*2^(1/4*(2*n-5+(-1)^n)).
%F G.f.: x*(3+8*x)/(1-2*x^2). - corrected by _Klaus Brockhaus_, Sep 18 2009
%t With[{lst2=2^Range[0,20]},Riffle[3*lst2,8*lst2]] (* or *) LinearRecurrence[ {0,2},{3,8},50](* _Harvey P. Dale_, Aug 20 2011 *)
%o (Magma) [ n le 2 select 5*n-2 else 2*Self(n-2): n in [1..41] ];
%o (Maxima) a[1]:3$ a[2]:8$ a[n]:=2*a[n-2]$ makelist(a[n], n, 1, 41); /* _Bruno Berselli_, May 23 2011 */
%o (PARI) a(n) = (7+(-1)^n)*2^((2*n-5+(-1)^n)/4) \\ _Charles R Greathouse IV_, Jun 11 2015
%Y Cf. A007283 (3*2^n), A000079 (powers of 2), A164303.
%K nonn,easy
%O 1,1
%A _Klaus Brockhaus_, Aug 20 2009