login
A164605
a(n) = ((1+4*sqrt(2))*(4+2*sqrt(2))^n + (1-4*sqrt(2))*(4-2*sqrt(2))^n)/2.
3
1, 20, 152, 1056, 7232, 49408, 337408, 2304000, 15732736, 107429888, 733577216, 5009178624, 34204811264, 233565061120, 1594881998848, 10890535501824, 74365228023808, 507797540175872, 3467458497216512, 23677287656325120
OFFSET
0,2
COMMENTS
Binomial transform of A164604. Fourth binomial transform of A164702. Inverse binomial transform of A164606.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..149 from Vincenzo Librandi)
FORMULA
a(n) = 8*a(n-1) - 8*a(n-2) for n > 1; a(0) = 1, a(1) = 20.
G.f.: (1+12*x)/(1-8*x+8*x^2).
E.g.f.: exp(4*x)*(cosh(2*sqrt(2)*x) + 4*sqrt(2)*sinh(2*sqrt(2)*x)). - G. C. Greubel, Aug 10 2017
MATHEMATICA
LinearRecurrence[{8, -8}, {1, 20}, 30] (* Harvey P. Dale, Mar 24 2015 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((1+4*r)*(4+2*r)^n+(1-4*r)*(4-2*r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 23 2009
(PARI) Vec((1+12*x)/(1-8*x+8*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 12 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 23 2009
STATUS
approved