login
A164594
a(n) = ((5 + sqrt(18))*(4 + sqrt(8))^n + (5 - sqrt(18))*(4 - sqrt(8))^n)/2.
2
5, 32, 216, 1472, 10048, 68608, 468480, 3198976, 21843968, 149159936, 1018527744, 6954942464, 47491317760, 324291002368, 2214397476864, 15120851795968, 103251634552832, 705046262054912, 4814357020016640, 32874486063693824, 224481032349417472
OFFSET
0,1
COMMENTS
Binomial transform of A101386. Fourth binomial transform of A164737. Inverse binomial transform of A164595.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)
FORMULA
a(n) = 8*a(n-1) - 8*a(n-2) for n > 1; a(0) = 5, a(1) = 32.
G.f.: (5-8*x)/(1-8*x+8*x^2).
E.g.f.: exp(4*x)*(5*cosh(2*sqrt(2)*x) + 3*sqrt(2)*sinh(2*sqrt(2)*x)). - G. C. Greubel, Aug 12 2017
a(n) = (2*sqrt(2))^n * (3*ChebyshevU(n, sqrt(2)) + 2*ChebyshevT(n, sqrt(2))). - G. C. Greubel, Apr 21 2020
MAPLE
A164594:= (n) -> simplify( (2*sqrt(2))^n*(5*ChebyshevU(n, sqrt(2)) - 2*sqrt(2)*ChebyshevU(n-1, sqrt(2))) ); seq( A164594(n), n = 0..25); # G. C. Greubel, Apr 21 2020
MATHEMATICA
CoefficientList[Series[(5-8*x)/(1-8*x+8*x^2), {x, 0, 25}], x] (* G. C. Greubel, Aug 12 2017 *)
Table[(2*Sqrt[2])^n*(3*ChebyshevU[n, Sqrt[2]] + 2*ChebyshevT[n, Sqrt[2]]), {n, 0, 25}] (* G. C. Greubel, Apr 21 2020 *)
LinearRecurrence[{8, -8}, {5, 32}, 30] (* Harvey P. Dale, Jul 09 2022 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((5+3*r)*(4+2*r)^n+(5-3*r)*(4-2*r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 24 2009
(PARI) my(x='x+O('x^25)); Vec((5-8*x)/(1-8*x+8*x^2)) \\ G. C. Greubel, Aug 12 2017
(Sage) [(2*sqrt(2))^n*(5*chebyshev_U(n, sqrt(2)) - 2*sqrt(2)*chebyshev_U(n-1, sqrt(2))) for n in (0..25)] # G. C. Greubel, Apr 21 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
EXTENSIONS
Extended by Klaus Brockhaus and R. J. Mathar Aug 24 2009
STATUS
approved