login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164590 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I. 1
1, 11, 110, 1100, 11000, 110000, 1100000, 10999945, 109998900, 1099983555, 10999781100, 109997266500, 1099967220000, 10999617750000, 109995633002970, 1099950885086625, 10999454401704780, 109993999528128375 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The initial terms coincide with those of A003953, although the two sequences are eventually different.

Computed with MAGMA using commands similar to those used to compute A154638.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..995

Index entries for linear recurrences with constant coefficients, signature (9, 9, 9, 9, 9, 9, -45).

FORMULA

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1).

MATHEMATICA

CoefficientList[Series[(t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 12 2017 *)

PROG

(PARI) t='t+O('t^50); Vec((t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1)) \\ G. C. Greubel, Aug 12 2017

CROSSREFS

Sequence in context: A163404 A115808 A163955 * A115806 A115830 A164780

Adjacent sequences:  A164587 A164588 A164589 * A164591 A164592 A164593

KEYWORD

nonn

AUTHOR

John Cannon and N. J. A. Sloane, Dec 03 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 12:51 EST 2017. Contains 295001 sequences.