login
A164577
Integer averages of the first perfect cubes up to some n^3.
4
1, 12, 25, 45, 112, 162, 225, 396, 507, 637, 960, 1156, 1377, 1900, 2205, 2541, 3312, 3750, 4225, 5292, 5887, 6525, 7936, 8712, 9537, 11340, 12321, 13357, 15600, 16810, 18081, 20812, 22275, 23805, 27072, 28812, 30625, 34476, 36517, 38637, 43120
OFFSET
1,2
COMMENTS
Integers of the form A000537(k)/k, created by the k>0 listed in A042965. - R. J. Mathar, Aug 20 2009
Integers of the form (1/4)*n*(n+1)^2 for some n. - Zak Seidov, Aug 17 2009
FORMULA
G.f.: ( x*(1+11*x+13*x^2+17*x^3+34*x^4+11*x^5+6*x^6+3*x^7) ) / ( (1+x+x^2)^3*(x-1)^4 ). - R. J. Mathar, Jan 25 2011
EXAMPLE
The average of the first cube is 1^3/1=1=a(1).
The average of the first two cubes is (1^3+2^3)/2=9/2, not integer, and does not contribute to the sequence.
The average of the first three cubes is (1^3+2^3+3^3)/3=12, integer, and defines a(2).
MATHEMATICA
Timing[s=0; lst={}; Do[a=(s+=n^3)/n; If[Mod[a, 1]==0, AppendTo[lst, a]], {n, 5!}]; lst]
With[{nn=80}, Select[#[[1]]/#[[2]]&/@Thread[{Accumulate[Range[ nn]^3], Range[ nn]}], IntegerQ]] (* or *) LinearRecurrence[{1, 0, 3, -3, 0, -3, 3, 0, 1, -1}, {1, 12, 25, 45, 112, 162, 225, 396, 507, 637}, 50] (* Harvey P. Dale, Mar 14 2020 *)
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Changed comments to examples - R. J. Mathar, Aug 20 2009
STATUS
approved