login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164538 a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 5, a(1) = 33. 2
5, 33, 215, 1391, 8965, 57657, 370375, 2377639, 15257765, 97891953, 627990935, 4028394431, 25840152805, 165748456137, 1063161046855, 6819395977399, 43741255696325, 280566449483073, 1799615613815255, 11543127800041871 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Binomial transform of A164537. Fifth binomial transform of A164682.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..151

Index entries for linear recurrences with constant coefficients, signature (10,-23).

FORMULA

a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 5, a(1) = 33.

G.f.: (5-17*x)/(1-10*x+23*x^2).

a(n) = ((5+4*sqrt(2))*(5+sqrt(2))^n + (5-4*sqrt(2))*(5-sqrt(2))^n)/2.

MATHEMATICA

LinearRecurrence[{10, -23}, {5, 33}, 20] (* Harvey P. Dale, May 29 2019 *)

PROG

(MAGMA) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((5+4*r)*(5+r)^n+(5-4*r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 21 2009

(PARI) Vec((5-17*x)/(1-10*x+23*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 14 2011

CROSSREFS

Cf. A164537, A164682.

Sequence in context: A015544 A155597 A250163 * A197533 A221441 A083076

Adjacent sequences:  A164535 A164536 A164537 * A164539 A164540 A164541

KEYWORD

nonn,easy

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009

EXTENSIONS

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 21 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 13 11:56 EDT 2021. Contains 342936 sequences. (Running on oeis4.)