This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164359 Expansion of (1 - x^2)^3 / ((1 - x)^3 * (1 - x^3)) in powers of x. 3
 1, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,1). FORMULA Euler transform of length 3 sequence [ 3, -3, 1]. Moebius transform is length 3 sequence [ 3, 0, -1]. a(-n) = a(n) for all n in Z. a(n+3) = a(n) unless n=0 or n=-3. a(3*n) = 2 unless n=0. a(3*n + 1) = a(3*n + 2) = 3. G.f.: -1 + (1/3) * ( 8 / (1 - x) - (2 + x) / (1 + x + x^2) ). a(n) = A244893(n) if n>1. - Michael Somos, Apr 17 2015 EXAMPLE G.f. = 1 + 3*x + 3*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 2*x^9 + ... MATHEMATICA a[ n_] := -Boole[n == 0] + 2 + KroneckerSymbol[ 9, n]; (* Michael Somos, Apr 17 2015 *) PROG (PARI) {a(n) = -(n==0) + 2 + kronecker(9, n)}; CROSSREFS Cf. A244893. Sequence in context: A075017 A060586 A076662 * A178307 A079063 A031352 Adjacent sequences:  A164356 A164357 A164358 * A164360 A164361 A164362 KEYWORD nonn,easy AUTHOR Michael Somos, Aug 13 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 04:08 EDT 2019. Contains 325290 sequences. (Running on oeis4.)