OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..590
Index entries for linear recurrences with constant coefficients, signature (47, 47, 47, 47, 47, -1128).
FORMULA
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1128*t^6 - 47*t^5 - 47*t^4 - 47*t^3 - 47*t^2 - 47*t + 1).
a(n) = -1128*a(n-6) + 47*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
MAPLE
seq(coeff(series((1+t)*(1-t^6)/(1-48*t+1175*t^6-1128*t^7), t, n+1), t, n), n = 0..20); # G. C. Greubel, Aug 24 2019
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^6)/(1-48*t+1175*t^6-1128*t^7), {t, 0, 20}], t] (* G. C. Greubel, Sep 15 2017 *)
coxG[{6, 1128, -47}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 24 2019 *)
PROG
(PARI) my(t='t+O('t^20)); Vec((1+t)*(1-t^6)/(1-48*t+1175*t^6-1128*t^7)) \\ G. C. Greubel, Sep 15 2017
(Magma) R<t>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^6)/(1-48*t+1175*t^6-1128*t^7) )); // G. C. Greubel, Aug 24 2019
(Sage)
def A164350_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^6)/(1-48*t+1175*t^6-1128*t^7)).list()
A164350_list(20) # G. C. Greubel, Aug 24 2019
(GAP) a:=[49, 2352, 112896, 5419008, 260112384, 12485393256];; for n in [7..20] do a[n]:=47*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -1128*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 24 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved