OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..600
Index entries for linear recurrences with constant coefficients, signature (43, 43, 43, 43, 43, -946).
FORMULA
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(946*t^6 - 43*t^5 - 43*t^4 - 43*t^3 - 43*t^2 - 43*t + 1).
G.f.: (1+x)*(1-x^6)/(1 -44*x +989*x^6 -946*x^7). - G. C. Greubel, Apr 25 2019
a(n) = -946*a(n-6) + 43*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 06 2021
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7), {x, 0, 20}], x] (* G. C. Greubel, Sep 14 2017, modified Apr 25 2019 *)
coxG[{6, 946, -43}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7)) \\ G. C. Greubel, Sep 14 2017, modified Apr 25 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7) )); // G. C. Greubel, Apr 25 2019
(Sage) ((1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved