%I
%S 3253,24517,78157,366103,548677,705097,1030429,1229257,5735467,
%T 6438391,12221371,17498881,19618243,74084347,118370899,263374849,
%U 270840151,286199371,410180599,418195621,418719781,529483321,565609411,698388391
%N Prime p1 of the form a^b + c^d = p1, where a, b, c, d are primes and a + b + c + d = p2, where p2 (A164078) is prime and conc(abcd) = p3 (concatenation of a, b, c , d) is also prime (A164079).
%e 5^5 + 2^7 = 3253, 5 + 5 + 2 + 7 = 19, conc (abcd) = 5527; 29^3 + 2^7 = 24517, 29 + 3 + 2 + 7 = 41, conc (abcd) = 29327; 2^5 + 5^7 = 78157, 2 + 5 + 5 + 7 = 19, conc (abcd) = 2557; 2^13 + 71^3 = 366103, 2 + 13 + 71 + 3 = 89, conc (abcd) = 89; 213713
%K nonn,base
%O 1,1
%A _Oleg Zyakun_, Aug 12 2009
%E Extended and edited by _Charles R Greathouse IV_, Apr 27 2010
