The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164068 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I. 0
 1, 35, 1190, 40460, 1375640, 46771760, 1590239245, 54068114100, 1838315192175, 62502693168300, 2125090773290100, 72253059281172000, 2456603097196693830, 83524474080352031265, 2839831057104956921160, 96554219846263616159415 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The initial terms coincide with those of A170754, although the two sequences are eventually different. Computed with MAGMA using commands similar to those used to compute A154638. LINKS Index entries for linear recurrences with constant coefficients, signature (33, 33, 33, 33, 33, -561). FORMULA G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1). MATHEMATICA CoefficientList[Series[(t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Sep 09 2017 *) coxG[{6, 561, -33}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 27 2018 *) PROG (PARI) t='t+O('t^50); Vec((t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1)) \\ G. C. Greubel, Sep 09 2017 CROSSREFS Sequence in context: A305539 A163218 A163600 * A164671 A165167 A165650 Adjacent sequences: A164065 A164066 A164067 * A164069 A164070 A164071 KEYWORD nonn AUTHOR John Cannon and N. J. A. Sloane, Dec 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 31 15:11 EST 2023. Contains 359976 sequences. (Running on oeis4.)