The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164053 Partial sums of A162255. 3
 3, 5, 11, 15, 27, 35, 59, 75, 123, 155, 251, 315, 507, 635, 1019, 1275, 2043, 2555, 4091, 5115, 8187, 10235, 16379, 20475, 32763, 40955, 65531, 81915, 131067, 163835, 262139, 327675, 524283, 655355, 1048571, 1310715, 2097147, 2621435, 4194299 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Apparently a(n) = A094958(n+4)-5. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1, 2, -2). FORMULA a(n) = 2*a(n-2) + 5 for n > 2; a(1) = 3, a(2) = 5. a(n) = (13 - 3*(-1)^n)*2^(1/4*(2*n -1 +(-1)^n))/2 - 5. G.f.: x*(3+2*x)/(1-x-2*x^2+2*x^3). a(1)=3, a(2)=5, a(3)=11, a(n)=a(n-1)+2*a(n-2)-2*a(n-3). - Harvey P. Dale, Aug 28 2012 MATHEMATICA Accumulate[LinearRecurrence[{0, 2}, {3, 2}, 50]] (* or *) LinearRecurrence[ {1, 2, -2}, {3, 5, 11}, 50] (* Harvey P. Dale, Aug 28 2012 *) PROG (MAGMA) T:=[ n le 2 select 4-n else 2*Self(n-2): n in [1..39] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]]; (PARI) x='x+O('x^50); Vec(x*(3+2*x)/(1-x-2*x^2+2*x^3)) \\ G. C. Greubel, Sep 09 2017 CROSSREFS Cf. A162255, A094958. Sequence in context: A018667 A102751 A032673 * A200176 A092929 A138879 Adjacent sequences:  A164050 A164051 A164052 * A164054 A164055 A164056 KEYWORD nonn AUTHOR Klaus Brockhaus, Aug 08 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 21:52 EDT 2020. Contains 334671 sequences. (Running on oeis4.)