This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164031 a(n) = ((2+3*sqrt(2))*(5+sqrt(2))^n+(2-3*sqrt(2))*(5-sqrt(2))^n)/4. 3
 1, 8, 57, 386, 2549, 16612, 107493, 692854, 4456201, 28626368, 183771057, 1179304106, 7566306749, 48539073052, 311365675293, 1997258072734, 12811170195601, 82174766283128, 527090748332457, 3380887858812626 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A164072. Fifth binomial transform of A164073. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (10,-23). FORMULA a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 1, a(1) = 8. G.f.: (1-2*x)/(1-10*x+23*x^2). E.g.f.: exp(5*x)*(2*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x))/2. - G. C. Greubel, Apr 03 2018 MATHEMATICA CoefficientList[Series[(1 - 2*x)/(1 - 10*x + 23*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{10, -23}, {1, 8}, 50] (* G. C. Greubel, Sep 07 2017 *) PROG (MAGMA) Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+3*r)*(5+r)^n+(2-3*r)*(5-r)^n)/4: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 09 2009 (PARI) x='x+O('x^50); Vec((1-2*x)/(1-10*x+23*x^2)) \\ G. C. Greubel, Sep 07 2017 (GAP) a:=[1, 8];; for n in [3..25] do a[n]:=10*a[n-1]-23*a[n-2]; od; a; # Muniru A Asiru, Apr 04 2018 CROSSREFS Cf. A164072, A164073 (1, 3, 2, 6, 4, 12). Sequence in context: A283125 A108666 A295711 * A297369 A023000 A097114 Adjacent sequences:  A164028 A164029 A164030 * A164032 A164033 A164034 KEYWORD nonn AUTHOR Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009 EXTENSIONS Edited and extended beyond a(5) by Klaus Brockhaus, Aug 09 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 16:40 EST 2019. Contains 319271 sequences. (Running on oeis4.)