login
A164021
a(n) = 12*a(n-1) - 34*a(n-2) for n > 1; a(0) = 3, a(1) = 22.
1
3, 22, 162, 1196, 8844, 65464, 484872, 3592688, 26626608, 197367904, 1463110176, 10846813376, 80416014528, 596200519552, 4420261740672, 32772323223296, 242978979496704, 1801488764368384, 13356579869532672, 99028340445867008
OFFSET
0,1
COMMENTS
Binomial transform of A163605.
FORMULA
a(n) = ((3+2*sqrt(2))*(6+sqrt(2))^n+(3-2*sqrt(2))*(6-sqrt(2))^n)/2.
G.f.: (3-14*x)/(1-12*x+34*x^2).
E.g.f.: (3*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x))*exp(6*x). - G. C. Greubel, Sep 07 2017
MATHEMATICA
LinearRecurrence[{12, -34}, {3, 22}, 20] (* Harvey P. Dale, Oct 19 2012 *)
PROG
(Magma) [ n le 2 select 19*n-16 else 12*Self(n-1)-34*Self(n-2): n in [1..20] ];
(PARI) x='x+O('x^50); Vec((3-14*x)/(1-12*x+34*x^2)) \\ G. C. Greubel, Sep 07 2017
CROSSREFS
Cf. A163605.
Sequence in context: A037586 A183259 A218668 * A192365 A074578 A290719
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 08 2009
STATUS
approved