This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164017 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I. 1
 1, 27, 702, 18252, 474552, 12338352, 320796801, 8340707700, 216858163275, 5638306085100, 146595798051300, 3811486585140000, 99098542944724050, 2576559301574090625, 66990468651299212500, 1741750282005552804375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The initial terms coincide with those of A170746, although the two sequences are eventually different. Computed with MAGMA using commands similar to those used to compute A154638. LINKS G. C. Greubel, Table of n, a(n) for n = 0..705 Index entries for linear recurrences with constant coefficients, signature (25,25,25,25,25,-325). FORMULA G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1). MAPLE seq(coeff(series((1+t)*(1-t^6)/(1-26*t+350*t^6-325*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 13 2019 MATHEMATICA coxG[{6, 325, -25}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 26 2017 *) CoefficientList[Series[(1+t)*(1-t^6)/(1-26*t+350*t^6-325*t^7), {t, 0, 30}], t] (* G. C. Greubel, Sep 07 2017 *) PROG (PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-26*t+350*t^6-325*t^7)) \\ G. C. Greubel, Sep 07 2017 (MAGMA) R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-26*t+350*t^6-325*t^7) )); // G. C. Greubel, Aug 13 2019 (Sage) def A164017_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P((1+t)*(1-t^6)/(1-26*t+350*t^6-325*t^7)).list() A164017_list(30) # G. C. Greubel, Aug 13 2019 (GAP) a:=[27, 702, 18252, 474552, 12338352, 320796801];; for n in [7..30] do a[n]:=25*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -325*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 13 2019 CROSSREFS Sequence in context: A162827 A163179 A163527 * A164644 A164969 A165445 Adjacent sequences:  A164014 A164015 A164016 * A164018 A164019 A164020 KEYWORD nonn,changed AUTHOR John Cannon and N. J. A. Sloane, Dec 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 15:00 EDT 2019. Contains 326106 sequences. (Running on oeis4.)