This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163957 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I. 1
 1, 12, 132, 1452, 15972, 175692, 1932546, 21257280, 233822160, 2571956640, 28290564720, 311185670400, 3422926421970, 37650915208500, 414146038003500, 4555452101075700, 50108275682741100, 551172361422635700 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The initial terms coincide with those of A003954, although the two sequences are eventually different. Computed with MAGMA using commands similar to those used to compute A154638. LINKS G. C. Greubel, Table of n, a(n) for n = 0..955 Index entries for linear recurrences with constant coefficients, signature (10,10,10,10,10,-55). FORMULA G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1). MAPLE seq(coeff(series((1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019 MATHEMATICA CoefficientList[Series[(1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7), {t, 0, 30}], t] (* G. C. Greubel, Aug 13 2017 *) coxG[{6, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 10 2019 *) PROG (PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7)) \\ G. C. Greubel, Aug 13 2017 (MAGMA) R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7) )); // G. C. Greubel, Aug 10 2019 (Sage) def A163957_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P((1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7)).list() A163957_list(30) # G. C. Greubel, Aug 10 2019 (GAP) a:=[12, 132, 1452, 15972, 175692, 1932546];; for n in [7..30] do a[n]:=10*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -55*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019 CROSSREFS Sequence in context: A010577 A163055 A163432 * A063813 A164601 A164781 Adjacent sequences:  A163954 A163955 A163956 * A163958 A163959 A163960 KEYWORD nonn,changed AUTHOR John Cannon and N. J. A. Sloane, Dec 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 04:50 EDT 2019. Contains 326072 sequences. (Running on oeis4.)