This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163955 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I. 1
 1, 11, 110, 1100, 11000, 110000, 1099945, 10998900, 109983555, 1099781100, 10997266500, 109967220000, 1099617752970, 10995633086625, 109950886704780, 1099454428128375, 10993999919042250, 109934555837535000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The initial terms coincide with those of A003953, although the two sequences are eventually different. Computed with MAGMA using commands similar to those used to compute A154638. LINKS G. C. Greubel, Table of n, a(n) for n = 0..995 Index entries for linear recurrences with constant coefficients, signature (9, 9, 9, 9, 9, -45). FORMULA G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1). MATHEMATICA CoefficientList[Series[(t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 13 2017 *) PROG (PARI) t='t+O('t^50); Vec((t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1)) \\ G. C. Greubel, Aug 13 2017 CROSSREFS Sequence in context: A162987 A163404 A115808 * A164590 A115806 A115830 Adjacent sequences:  A163952 A163953 A163954 * A163956 A163957 A163958 KEYWORD nonn AUTHOR John Cannon and N. J. A. Sloane, Dec 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 14:44 EDT 2019. Contains 325106 sequences. (Running on oeis4.)