login
A163920
Expansion of Sum_{k>0} k*(k+1)/2 * x^k / (1 - (-x)^k)^3.
1
1, 0, 12, 9, 30, 0, 56, 60, 126, 0, 132, 126, 182, 0, 420, 316, 306, 0, 380, 330, 798, 0, 552, 888, 875, 0, 1296, 630, 870, 0, 992, 1536, 1914, 0, 2100, 1467, 1406, 0, 2652, 2360, 1722, 0, 1892, 1518, 4860, 0, 2256, 4872, 3234, 0, 4488, 2106, 2862, 0, 5060
OFFSET
1,3
LINKS
FORMULA
a(4n+2) = 0.
a(2n+1) = A034715(2n+1), where A034715 is the Dirichlet convolution of triangular numbers with themselves.
a(n) = (n/4) * Sum_{d|n} (-1)^(n+d) * (d+1) * (n/d+1). - Seiichi Manyama, Jul 17 2023
MATHEMATICA
CoefficientList[Series[Sum[((k(k+1))/2 x^k)/(1-(-x)^k)^3, {k, 100}], {x, 0, 100}], x] (* Harvey P. Dale, May 08 2021 *)
PROG
(PARI) {a(n) = if( n<1, 0, polcoeff( sum(k=1, n, k*(k+1)/2 * x^k / (1 - (-x)^k)^3, x*O(x^n)), n))}
CROSSREFS
Cf. A143520 (variant), A034715.
Sequence in context: A018870 A327470 A068614 * A038335 A359737 A216856
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 06 2009
STATUS
approved