login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163865 The binomial transform of the swinging factorial (A056040). 2
1, 2, 5, 16, 47, 146, 447, 1380, 4251, 13102, 40343, 124136, 381625, 1172198, 3597401, 11031012, 33798339, 103477590, 316581567, 967900224, 2957316429, 9030317478, 27558851565, 84059345244, 256265811333, 780885245826, 2378410969977, 7241027262280 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = sum {k=0..n} binomial(n,k) k$, where k$ denotes the swinging factorial of k (A056040). The swinging analog to the number of arrangements, the binomial transform of the factorial (A000522).

REFERENCES

Peter Luschny, "Divide, swing and conquer the factorial and the lcm{1,2,...,n}", preprint, April 2008.

LINKS

Table of n, a(n) for n=0..27.

Peter Luschny, Swinging Factorial.

FORMULA

E.g.f.: exp(x)*BesselI(0,2*x)*(1+x). - Peter Luschny, Aug 26 2012

O.g.f.: (1-x-4*x^2)/((1+x)*(1-3*x))^(3/2). - Peter Luschny, Oct 31 2013

MAPLE

a := proc(n) local k: add(binomial(n, k)*(k!/iquo(k, 2)!^2), k=0..n) end:

seq(coeff(series((1-z-4*z^2)/((1+z)*(1-3*z))^(3/2), z, 28), z, n), n=0..27); # Peter Luschny, Oct 31 2013

MATHEMATICA

sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[0] = 1; a[n_] := Sum[Binomial[n, k]*sf[k], {k, 0, n}]; Table[a[n], {n, 0, 27}] (* Jean-Fran├žois Alcover, Jul 26 2013 *)

CROSSREFS

Cf. A056040, A000522, A163650.

Sequence in context: A075887 A148376 A148377 * A148378 A148379 A257970

Adjacent sequences:  A163862 A163863 A163864 * A163866 A163867 A163868

KEYWORD

nonn

AUTHOR

Peter Luschny, Aug 06 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 25 19:05 EDT 2017. Contains 285426 sequences.