%I
%S 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,
%T 97,101,103,107,109,113,223,227,229,233,239,241,251,257,263,269,271,
%U 277,281,283,293,307,311,313,317,331,337,733,739,743,751,757,761,769,773
%N Primes p such that the difference between the nearest cubes above and below p is prime.
%C There is a sequence A048763(A000040(n)) = A145446(n) of nearest cubes above the primes and a sequence A048762(A000040(n)) of nearest cubes below the primes.
%C If the difference A145446(n)  A048762(A000040(n)) is prime, then A000040(n) is in this sequence.
%H G. C. Greubel, <a href="/A163849/b163849.txt">Table of n, a(n) for n = 1..2500</a>
%e The difference of cubes 6^3  5^3 = 91 = 7*13 is not prime, so the primes larger than 5^3 = 125 but smaller than 6^3 = 216 are not in the sequence.
%t f[n_]:=IntegerPart[n^(1/3)]; lst={};Do[p=Prime[n];If[PrimeQ[(f[p]+1)^3f[p]^3], AppendTo[lst,p]],{n,6!}];lst
%Y Cf. A111252, A145446.
%K nonn,easy
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Aug 05 2009
%E Edited by _R. J. Mathar_, Aug 12 2009
