%I #21 May 08 2020 17:26:28
%S 1,2,1,5,3,2,16,11,8,6,47,31,20,12,6,146,99,68,48,36,30,447,301,202,
%T 134,86,50,20,1380,933,632,430,296,210,160,140,4251,2871,1938,1306,
%U 876,580,370,210,70,13102,8851,5980,4042,2736,1860,1280,910,700,630
%N Triangle interpolating the binomial transform of the swinging factorial (A163865) with the swinging factorial (A056040).
%C Triangle read by rows.
%C An analog to the binomial triangle of the factorials (A076571).
%H G. C. Greubel, <a href="/A163840/b163840.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.
%H Peter Luschny, <a href="http://www.luschny.de/math/swing/SwingingFactorial.html"> Swinging Factorial</a>.
%F T(n,k) = Sum_{i=k..n} binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040), for n >= 0, k >= 0.
%e Triangle begins
%e 1;
%e 2, 1;
%e 5, 3, 2;
%e 16, 11, 8, 6;
%e 47, 31, 20, 12, 6;
%e 146, 99, 68, 48, 36, 30;
%e 447, 301, 202, 134, 86, 50, 20;
%p SumTria := proc(f,n,display) local m,A,j,i,T; T:=f(0);
%p for m from 0 by 1 to n-1 do A[m] := f(m);
%p for j from m by -1 to 1 do A[j-1] := A[j-1] + A[j] od;
%p for i from 0 to m do T := T,A[i] od;
%p if display then print(seq(T[i],i=nops([T])-m..nops([T]))) fi;
%p od; subsop(1=NULL,[T]) end:
%p swing := proc(n) option remember; if n = 0 then 1 elif
%p irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
%p # Computes n rows of the triangle:
%p A163840 := n -> SumTria(swing,n,true);
%t sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2013 *)
%Y Row sums are A163843.
%Y Cf. A056040, A163865, A163841, A163842, A163650.
%K nonn,tabl
%O 0,2
%A _Peter Luschny_, Aug 06 2009