login
A163816
Integers with exactly 100 divisors.
1
45360, 71280, 84240, 99792, 110160, 117936, 123120, 149040, 154224, 162000, 172368, 185328, 187920, 200880, 207360, 208656, 210000, 239760, 242352, 263088, 265680, 270000, 270864, 278640, 281232, 286416, 290304, 304560, 320112, 327888
OFFSET
1,1
COMMENTS
From Zak Seidov, Aug 07 2009: (Start)
Numbers n with A000005(n)=tau(n)=100.
a(1)=45360 because 45360=2^4*3^4*5^1*7^1 and tau(45360)=A000005(45360)=(4+1)(4+1)(1+1)(1+1)=100.
First odd term is a(536)=3898125=3^4*5^4*5^7*1^1. (End)
These are numbers with prime signatures {99}, {49,1}, {24,3}, {19,4}, {9,9}, {24,1,1}, {9,4,1}, {4,4,3}, and {4,4,1,1}. - T. D. Noe, May 09 2011
EXAMPLE
a(1)=45360 which is divisible by exactly 100 factors:(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 27, 28, 30, 35, 36, 40, 42, 45, 48, 54, 56, 60, 63, 70, 72, 80, 81, 84, 90, 105, 108, 112, 120, 126, 135, 140, 144, 162, 168, 180, 189, 210, 216, 240, 252, 270, 280, 315, 324, 336, 360, 378, 405, 420, 432, 504, 540, 560, 567, 630, 648, 720, 756, 810, 840, 945, 1008, 1080, 1134, 1260, 1296, 1512, 1620, 1680, 1890, 2160, 2268, 2520, 2835, 3024, 3240, 3780, 4536, 5040, 5670, 6480, 7560, 9072, 11340, 15120, 22680, 45360)
MATHEMATICA
S={}; Do[If[DivisorSigma[0, n]==100, AppendTo[S, n]], {n, 45360, 10^7}]; S (* Zak Seidov, Aug 07 2009 *)
CROSSREFS
Cf. A000005.
Sequence in context: A031851 A185927 A287378 * A055355 A210618 A269936
KEYWORD
easy,nonn
AUTHOR
Gil Broussard, Aug 04 2009
STATUS
approved