This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163810 Expansion of (1 - x) * (1 - x^2) * (1 - x^3) / (1 - x^6) in powers of x. 5
 1, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1, -1). FORMULA Euler transform of length 6 sequence [ -1, -1, -1, 0, 0, 1]. G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 2 * u * (1 - u) * (2 - v) - (v - u^2). a(3*n) = 0 unless n=0. a(6*n + 1) = a(6*n + 2) = -1, a(6*n + 4) = a(6*n + 5) = a(0) = 1. a(-n) = -a(n) unless n=0. a(n+3) = -a(n) unless n=0 or n=-3. G.f.: (1 - x)^2 / (1 - x + x^2). EXAMPLE 1 - x - x^2 + x^4 + x^5 - x^7 - x^8 + x^10 + x^11 - x^13 - x^14 + ... MATHEMATICA Join[{1}, LinearRecurrence[{1, -1}, {-1, -1}, 104]] (* Ray Chandler, Sep 15 2015 *) PROG (PARI) {a(n) = (n==0) + [0, -1, -1, 0, 1, 1][n%6 + 1]} (PARI) {a(n) = (n==0) + (-1)^n * kronecker(-3, n)} CROSSREFS A163806(n) = -a(n) unless n=0. A106510(n) = (-1)^n * a(n). Convolution inverse of A028310. Series reversion of A109081. Sequence in context: A267208 A106510 A163806 * A163804 A181653 A155091 Adjacent sequences:  A163807 A163808 A163809 * A163811 A163812 A163813 KEYWORD sign,easy AUTHOR Michael Somos, Nov 07 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 26 05:23 EDT 2019. Contains 326328 sequences. (Running on oeis4.)