login
A163760
Exactly four distinct primes occur as substrings of the digits of n.
1
113, 131, 179, 197, 223, 231, 233, 235, 239, 253, 257, 271, 273, 283, 293, 297, 311, 313, 337, 347, 353, 359, 367, 371, 372, 375, 397, 431, 437, 473, 479, 531, 532, 547, 571, 573, 593, 597, 613, 617, 653, 713, 719, 723, 731, 732, 733, 735, 737, 739, 743
OFFSET
1,1
COMMENTS
n, 10*n, 10*n+4, 10*n+6 and 10*n+8 are all in the sequence if any one of them is. - Robert Israel, Mar 21 2019
LINKS
EXAMPLE
a(1) = 113 because "3" and "11" and "13" and "113" are prime substrings of "113".
MAPLE
filter:= proc(n) local L, m, SS, S, count, i, j;
L:= convert(n, base, 10);
m:= nops(L);
SS:= remove(t -> t[-1]=0, {seq(seq(L[i..j], j=i..m), i=1..m)});
nops(select(isprime, map(S -> add(S[i]*10^(i-1), i=1..nops(S)), SS))) = 4
end proc:
select(filter, [$100..1000]); # Robert Israel, Mar 21 2019
CROSSREFS
Sequence in context: A355856 A180441 A180407 * A179911 A376213 A344627
KEYWORD
base,easy,nonn
AUTHOR
Gil Broussard, Aug 03 2009
STATUS
approved