OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..635
Index entries for linear recurrences with constant coefficients, signature (36, 36, 36, 36, -666).
FORMULA
G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(666*t^5 - 36*t^4 - 36*t^3 - 36*t^2 - 36*t + 1).
a(n) = 36*a(n-1)+36*a(n-2)+36*a(n-3)+36*a(n-4)-666*a(n-5). - Wesley Ivan Hurt, May 11 2021
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^5)/(1-37*x+702*x^5-666*x^6), {x, 0, 20}], x] (* G. C. Greubel, Aug 01 2017 *)
coxG[{5, 666, -36}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 22 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-37*x+702*x^5-666*x^6)) \\ G. C. Greubel, Aug 01 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-37*x+702*x^5-666*x^6) )); // G. C. Greubel, Apr 28 2019
(Sage) ((1+x)*(1-x^5)/(1-37*x+702*x^5-666*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
(GAP) a:=[38, 1406, 52022, 1924814, 71217415];; for n in [6..20] do a[n]:=36*(a[n-1]+a[n-2] +a[n-3]+a[n-4]) - 666*a[n-5]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved