login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163649 Triangle interpolating between (-1)^n (A033999) and A056040(n), read by rows. 4
1, -1, 1, 1, -2, 2, -1, 3, -6, 6, 1, -4, 12, -24, 6, -1, 5, -20, 60, -30, 30, 1, -6, 30, -120, 90, -180, 20, -1, 7, -42, 210, -210, 630, -140, 140, 1, -8, 56, -336, 420, -1680, 560, -1120, 70 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Given T(n,k) = (-1)^(n-k)*floor(k/2)!^(-2)*n!/(n-k)!, let A(n,k) = abs(T(n,k)) be the coefficients of the polynomials Sum_{k=0..n} binomial(n,k)*A056040(k)*q^k. Substituting q^k -> 1/(floor(k/2)+1) in the polynomials gives the extended Motzkin numbers A189912. (See A089627 for the Motzkin numbers and A194586 for the complementary Motzkin numbers.)

LINKS

G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened

Peter Luschny, The lost Catalan numbers.

FORMULA

T(n,k) = (-1)^(n-k)*floor(k/2)!^(-2)*n!/(n-k)!.

E.g.f.: egf(x,y) = exp(-x)*BesselI(0,2*x*y)*(1+x*y).

EXAMPLE

1

-1, 1

1, -2, 2

-1, 3, -6, 6

1, -4, 12, -24, 6

-1, 5, -20, 60, -30, 30

1, -6, 30, -120, 90, -180, 20

-1, 7, -42, 210, -210, 630, -140, 140

1, -8, 56, -336, 420, -1680, 560, -1120, 70

MAPLE

a := proc(n, k) (-1)^(n-k)*floor(k/2)!^(-2)*n!/(n-k)! end:

seq(print(seq(a(n, k), k=0..n)), n=0..8);

MATHEMATICA

t[n_, k_] := (-1)^(n - k)*Floor[k/2]!^(-2)*n!/(n - k)!; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jul 29 2013 *)

PROG

(PARI) for(n=0, 10, for(k=0, n, print1((-1)^(n -k)*( (floor(k/2))! )^(-2)*(n!/(n - k)!), ", "))) \\ G. C. Greubel, Aug 01 2017

CROSSREFS

Row sums give A163650, row sums of absolute values give A163865.

Aerated versions A194586 (odd case) and A089627 (even case).

Sequence in context: A247507 A107111 A082037 * A110858 A008279 A239572

Adjacent sequences:  A163646 A163647 A163648 * A163650 A163651 A163652

KEYWORD

sign,tabl

AUTHOR

Peter Luschny, Aug 02 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 20 17:05 EDT 2017. Contains 290836 sequences.