|
|
A163628
|
|
Integers such that the two adjacent integers are a prime and three times a prime.
|
|
1
|
|
|
8, 10, 14, 16, 20, 22, 32, 38, 40, 52, 58, 68, 70, 88, 110, 112, 128, 130, 140, 158, 178, 182, 200, 212, 238, 250, 268, 292, 308, 310, 338, 380, 382, 410, 418, 448, 488, 490, 500, 502, 520, 542, 572, 578, 592, 598, 632, 682, 700, 718, 752, 770, 772, 788, 808
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Union[3*A023208 + 1, 3*A088878 - 1]. [Zak Seidov, Aug 07 2009]
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
a(1)=8 which lies between 7=A000040(4) and 9 = A001748(2).
a(2)=10 which lies between 9=A001748(2) and 11 = A000040(5).
|
|
MATHEMATICA
|
n = 1; A023208 = {}; Do[If[PrimeQ[(Prime[k] - 2 n)/(2 n + 1)], AppendTo[A023208, (Prime[k] - 2 n)/(2 n + 1)]], {k, 1, 1000}]; A023208;
A088878 = {}; Do[p = Prime[n]; If[PrimeQ[3*p - 2], AppendTo[A088878, p]], {n, 5!}]; A088878; Union[3*A023208 + 1, 3*A088878 - 1] (* G. C. Greubel, Jul 30 2017 *)
|
|
CROSSREFS
|
Cf. A000040, A163492.
Sequence in context: A100319 A167692 A171689 * A060864 A087695 A322998
Adjacent sequences: A163625 A163626 A163627 * A163629 A163630 A163631
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Juri-Stepan Gerasimov, Aug 02 2009
|
|
EXTENSIONS
|
Many terms like 44, 46, 62 etc. removed by R. J. Mathar, Aug 06 2009
|
|
STATUS
|
approved
|
|
|
|