OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..670
Index entries for linear recurrences with constant coefficients, signature (29, 29, 29, 29, -435).
FORMULA
G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).
a(n) = 29*a(n-1)+29*a(n-2)+29*a(n-3)+29*a(n-4)-435*a(n-5). - Wesley Ivan Hurt, May 11 2021
MATHEMATICA
With[{num=Total[2t^Range[4]]+t^5+1, den=Total[-29 t^Range[4]]+435t^5+1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Harvey P. Dale, Sep 16 2011 *)
CoefficientList[Series[(1+x)*(1-x^5)/(1-30*x+464*x^5-435*x^6), {x, 0, 20}], x] (* or *) coxG[{5, 435, -29}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 18 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-30*x+464*x^5-435*x^6)) \\ G. C. Greubel, Jul 28 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-30*x+464*x^5-435*x^6) )); // G. C. Greubel, May 18 2019
(Sage) ((1+x)*(1-x^5)/(1-30*x+464*x^5-435*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 18 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved