login
A163548
Number of reduced words of length n in Coxeter group on 28 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
1
1, 28, 756, 20412, 551124, 14879970, 401748984, 10846947384, 292860149400, 7907023424664, 213484216161762, 5763927599870076, 155622096911221668, 4201690015605193020, 113442752267421552612, 3062876603036110993314
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170747, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(351*t^5 - 26*t^4 - 26*t^3 - 26*t^2 - 26*t + 1).
a(n) = 26*a(n-1)+26*a(n-2)+26*a(n-3)+26*a(n-4)-351*a(n-5). - Wesley Ivan Hurt, May 10 2021
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^5)/(1-27*x+377*x^5-351*x^6), {x, 0, 20}], x] (* G. C. Greubel, Jul 27 2017 *)
coxG[{5, 351, -26}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 05 2018 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-27*x+377*x^5-351*x^6)) \\ G. C. Greubel, Jul 27 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-27*x+377*x^5-351*x^6) )); // G. C. Greubel, May 16 2019
(Sage) ((1+x)*(1-x^5)/(1-27*x+377*x^5-351*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
CROSSREFS
Sequence in context: A097834 A162830 A163187 * A164025 A164664 A164970
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved