login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163522 a(1)=2; for n>1, a(n) = sum of digits of a(n-1)^2. 2
2, 4, 7, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..1001

Index entries for linear recurrences with constant coefficients, signature (0,1).

FORMULA

G.f.: x*(2 + 4*x + 5*x^2 + 9*x^3 + 9*x^4)/((1 - x)*(1 + x)). - Bruno Berselli, May 29 2014

EXAMPLE

a(2)=4  because 2^2=4;

a(3)=7  because 4^2=16 and 6+1=7;

a(4)=13 because 7^2=49 and 4+9=13.

Other similar sequences, starting from 3, 5, 7 respectively:

. 3, 9 (9 repeated);

. 5, 7, 13, 16, 13 (13, 16 repeated);

. 8, 10, 1 (1 repeated).

MATHEMATICA

Join[{2, 4, 7}, LinearRecurrence[{0, 1}, {13, 16}, 50]] (* or *) CoefficientList[Series[x*(2 + 4*x + 5*x^2 + 9*x^3 + 9*x^4)/((1 - x)*(1 + x)), {x, 0, 50}], x]  (* G. C. Greubel, Jul 27 2017 *)

PROG

(PARI) x='x+O('x^50); Vec(x*(2 + 4*x + 5*x^2 + 9*x^3 + 9*x^4)/((1 - x)*(1 + x))) \\ G. C. Greubel, Jul 27 2017

(Scheme) (define (A163522 n) (cond ((<= n 2) (expt 2 n)) ((= 3 n) 7) ((even? n) 13) (else 16))) ;; Antti Karttunen, Sep 14 2017

CROSSREFS

Cf. A007953.

Sequence in context: A177101 A018414 A002152 * A255173 A002466 A162842

Adjacent sequences:  A163519 A163520 A163521 * A163523 A163524 A163525

KEYWORD

nonn,base,easy

AUTHOR

Vincenzo Librandi, Jul 30 2009

EXTENSIONS

Edited by N. J. A. Sloane, Aug 01 2009

Edited by Bruno Berselli, May 29 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 10:03 EDT 2019. Contains 325219 sequences. (Running on oeis4.)