login
A163456
a(n) = binomial(5*n,n)/5.
7
1, 9, 91, 969, 10626, 118755, 1344904, 15380937, 177232627, 2054455634, 23930713170, 279871768995, 3284214703056, 38650751381832, 456002537343216, 5391644226101705, 63871405575418665, 757929628541719755
OFFSET
1,2
COMMENTS
Original name was A163455(n)/4.
For prime p, a(p) == 1 (mod p). - Gary Detlefs, Aug 03 2013
In fact, a(p) == 1 (mod p^3) for prime p >= 5. See Mestrovic, Section 3. - Peter Bala, Oct 09 2015
From Robert Israel, Jul 12 2016: (Start)
a(p+1) == 5 (mod p) for primes p >= 5.
a(p^(k+1)) == a(p^k) mod p^(3(k+1)) for primes p >= 5. (End)
REFERENCES
Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 2nd ed. 1994.
FORMULA
a(n) = (5*n-1)!/(4*n!*(4*n-1)!).
a(n) = binomial(5*n,n)/5. - Gary Detlefs, Aug 03 2013
From Peter Bala, Oct 08 2015: (Start)
a(n) = (1/3)*[x^n] (C(x)^3)^n, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. Cf. A224274.
exp( 3*Sum_{n >= 1} a(n)*x^n/n ) = 1 + 3*x + 18*x^2 + 136*x^3 + ... is the o.g.f. for A118970. (End)
From Peter Bala,Jul 12 2016: (Start)
a(n) = 1/6*[x^n] (1 + x)/(1 - x)^(4*n + 1).
a(n) = 1/6*[x^n] ( 1/C(-x)^6 )^n. Cf. A227726. (End)
a(n) ~ 2^(-8*n-3/2)*5^(5*n-1/2)*n^(-1/2)/sqrt(Pi). - Ilya Gutkovskiy, Jul 12 2016
From Robert Israel, Jul 12 2016: (Start)
G.f.: x*hypergeom([1, 6/5, 7/5, 8/5, 9/5], [5/4, 3/2, 7/4, 2], (3125/256)*x).
a(n) = 5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)/(8*n*(4*n-3)*(2*n-1)*(4*n-1)). (End)
O.g.f.: f(x)/(1 - 4*f(x)), where f(x) = series reversion (x/(1 + x)^5) = x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + ... is the o.g.f. of A002294 with the initial term omitted. Cf. A025174. - Peter Bala, Feb 03 2022
Right-hand side of the identities (1/4)*Sum_{k = 0..n} (-1)^(n+k)*C(x*n,n-k)*C((x+4)*n+k-1,k) = C(5*n,n)/5 and (1/5)*Sum_{k = 0..n} (-1)^k*C(x*n,n-k)*C((x-5)*n+k-1,k) = C(5*n,n)/5, both valid for n >= 1 and x arbitrary. - Peter Bala, Feb 28 2022
Right-hand side of the identity (1/4)*Sum_{k = 0..2*n} (-1)^k*binomial(6*n-k-1,2*n-k)*binomial(4*n+k-1,k) = binomial(5*n,n)/5, for n >= 1. - Peter Bala, Mar 09 2022
a(n) = (1/2)* [x*n] F(x)^(2*n) = [x^n] G(x)^n for n >= 1, where F(x) = Sum_{k >= 0} 1/(2*k + 1)*binomial(3*k,k)*x^k is the o.g.f. of A001764 and G(x) = Sum_{k >= 0} 1/(3*k + 1)*binomial(4*k,k)*x^k is the o.g.f. of A002293 (apply Concrete Mathematics, equation 5.60, p. 201). - Peter Bala, Apr 26 2023
MAPLE
seq(binomial(5*n, n)/5, n=1..20); # Robert Israel, Jul 12 2016
MATHEMATICA
Array[Binomial[5 #, #]/5 &, {18}] (* Michael De Vlieger, Oct 09 2015 *)
PROG
(PARI) a(n) = binomial(5*n, n)/5 \\ Altug Alkan, Oct 09 2015
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Jul 28 2009
EXTENSIONS
Renamed by Peter Bala, Oct 08 2015
STATUS
approved