%I #9 Sep 08 2022 08:45:46
%S 1,10,98,948,9092,86696,823432,7799760,73743376,696308896,6568853024,
%T 61930496832,583619061824,5498214185600,51787045136512,
%U 487703442676992,4592458284368128,43241719103916544,407135092031840768
%N a(n) = 16*a(n-1) - 62*a(n-2) for n > 1; a(0) = 1, a(1) = 10.
%C Binomial transform of A163445. Inverse binomial transform of A163447.
%H G. C. Greubel, <a href="/A163446/b163446.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (16,-62).
%F a(n) = ((1+sqrt(2))*(8+sqrt(2))^n + (1-sqrt(2))*(8-sqrt(2))^n)/2.
%F G.f.: (1-6*x)/(1-16*x+62*x^2).
%F E.g.f.: exp(8*x)*( cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) ). - _G. C. Greubel_, Dec 23 2016
%t LinearRecurrence[{16,-62},{1,10},30] (* _Harvey P. Dale_, Sep 25 2015 *)
%o (Magma) [ n le 2 select 9*n-8 else 16*Self(n-1)-62*Self(n-2): n in [1..19] ];
%o (PARI) Vec((1-6*x)/(1-16*x+62*x^2) + O(x^50)) \\ _G. C. Greubel_, Dec 23 2016
%Y Cf. A163445, A163447.
%K nonn
%O 0,2
%A _Klaus Brockhaus_, Jul 27 2009