login
A positive integer is included if it is a palindrome when written in binary, and it is not divisible by any primes that are not binary palindromes.
3

%I #21 Mar 31 2021 02:33:43

%S 1,3,5,7,9,15,17,21,27,31,45,51,63,73,85,93,107,119,127,153,189,219,

%T 255,257,313,365,381,443,511,765,771,1193,1241,1285,1453,1533,1571,

%U 1619,1787,1799,1831,1879,2313,3579,3855,4369,4889,5113,5189,5397,5557,5869

%N A positive integer is included if it is a palindrome when written in binary, and it is not divisible by any primes that are not binary palindromes.

%H Robert Israel, <a href="/A163410/b163410.txt">Table of n, a(n) for n = 1..10000</a>

%e 51 in binary is 110011, which is a palindrome. 51 is divisible by the primes 3 and 17. 3 in binary is 11, a palindrome. And 17 in binary is 10001, also a palindrome. Since all the primes dividing the binary palindrome 51 are themselves binary palindromes, then 51 is included in this sequence.

%p dmax:= 15: # to get all terms with at most dmax binary digits

%p revdigs:= proc(n)

%p local L, Ln, i;

%p L:= convert(n, base, 2);

%p Ln:= nops(L);

%p add(L[i]*2^(Ln-i), i=1..Ln);

%p end proc:

%p isbpali:= proc(n) option remember; local L; L:= convert(n,base,2); L=ListTools:-Reverse(L) end proc:

%p Bp:= {0, 1}:

%p for d from 2 to dmax do

%p if d::even then

%p Bp:= Bp union {seq(2^(d/2)*x + revdigs(x), x=2^(d/2-1)..2^(d/2)-1)}

%p else

%p m:= (d-1)/2;

%p B:={seq(2^(m+1)*x + revdigs(x), x=2^(m-1)..2^m-1)};

%p Bp:= Bp union B union map(`+`, B, 2^m)

%p fi

%p od:

%p R:= select(t -> andmap(isbpali, numtheory:-factorset(t)), Bp minus {0}):

%p sort(convert(R,list)); # _Robert Israel_, Dec 19 2016

%t binPalQ[n_] := PalindromeQ @ IntegerDigits[n, 2]; Select[Range[6000], binPalQ[#] && AllTrue[FactorInteger[#][[;; , 1]], binPalQ] &] (* _Amiram Eldar_, Mar 30 2021 *)

%Y Cf. A006995, A163411, A207039.

%K base,nonn

%O 1,2

%A _Leroy Quet_, Jul 27 2009

%E More terms from _Sean A. Irvine_, Nov 10 2009