login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163322 The 3rd Hermite Polynomial evaluated at n: H_3(n) = 8*n^3 - 12*n. 3
0, -4, 40, 180, 464, 940, 1656, 2660, 4000, 5724, 7880, 10516, 13680, 17420, 21784, 26820, 32576, 39100, 46440, 54644, 63760, 73836, 84920, 97060, 110304, 124700, 140296, 157140, 175280, 194764, 215640, 237956, 261760, 287100, 314024, 342580 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for sequences related to Hermite polynomials

Eric Weisstein's World of Mathematics, Hermite Polynomial.

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = 8*n^3 - 12*n.

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).

G.f.: -4*x*(1-14*x+x^2)/(x-1)^4.

MAPLE

A163322 := proc(n) orthopoly[H](3, n) ; end: seq(A163322(n), n=0..80) ; # R. J. Mathar, Jul 26 2009

MATHEMATICA

CoefficientList[Series[-4*x*(1-14*x+x^2)/(x-1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 05 2012 *)

LinearRecurrence[{4, -6, 4, -1}, {0, -4, 40, 180}, 40] (* Harvey P. Dale, Aug 14 2014 *)

PROG

(MAGMA) [8*n^3-12*n: n in [0..40]]; // Vincenzo Librandi, Mar 05 2012

(PARI) a(n)=8*n^3-12*n \\ Charles R Greathouse IV, Jan 29 2016

CROSSREFS

Cf. A060821, A059343.

Sequence in context: A248964 A224086 A271013 * A238328 A009355 A061132

Adjacent sequences:  A163319 A163320 A163321 * A163323 A163324 A163325

KEYWORD

sign,easy

AUTHOR

Vincenzo Librandi, Jul 25 2009

EXTENSIONS

Edited by R. J. Mathar, Jul 26 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 02:26 EDT 2019. Contains 325210 sequences. (Running on oeis4.)