login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163301 a(n) = Sum_{x=n-th even nonprime..n-th odd nonprime} -x*(-1)^x. 1
1, 3, 5, 7, 8, 8, 10, 10, 11, 13, 14, 14, 15, 15, 17, 17, 18, 20, 20, 21, 22, 22, 23, 23, 23, 24, 26, 28, 29, 29, 29, 29, 29, 29, 30, 31, 31, 33, 33, 33, 33, 35, 35, 36, 36, 37, 38, 38, 39, 39, 41, 41, 41, 41, 43, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 47, 49, 50, 50, 52, 52 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Here n-th even nonprime = A163300(n), n-th odd nonprime = A014076(n) and A163300 U A014076 = A141468.

LINKS

Table of n, a(n) for n=1..71.

FORMULA

a(n) = Sum_{x=A163300(n)..A014076(n)}-x*(-1)^x.

a(n) = A001057( A014076(n)) - A001057(A163300(n)-1). - R. J. Mathar, May 21 2010

EXAMPLE

a(1) = -0*(-1)^0 - 1*(-1)^1 = 0 + 1 = 1;

a(2) = -4*(-1)^4 - 5*(-1)^5 - 6*(-1)6 - 7*(-1)^7 - 8*(-1)^8 - 9*(-1)^9 = -4 + 5 - 6 + 7 - 8 + 9 = 3.

MAPLE

A163300 := proc(n) if n <= 2 then op(n, [0, 4]) ; else for a from procname(n-1)+2 by 2 do if not isprime(a) then return a; end if; end do; end if; end proc:

A014076 := proc(n) if n = 1 then 1; else for a from procname(n-1)+2 by 2 do if not isprime(a) then return a ; end if; end do: end if; end proc:

A001057 := proc(n) (1-(-1)^n*(2*n+1))/4; end proc:

A163301 := proc(n) A001057( A014076(n)) - A001057(A163300(n)-1) ; end proc: seq(A163301(n), n=1..120) ; # R. J. Mathar, May 21 2010

CROSSREFS

Cf. A014076, A141468, A163300.

Sequence in context: A161696 A196084 A008508 * A036593 A086674 A137203

Adjacent sequences:  A163298 A163299 A163300 * A163302 A163303 A163304

KEYWORD

nonn

AUTHOR

Juri-Stepan Gerasimov, Jul 26 2009

EXTENSIONS

Corrected from a(39) onwards by R. J. Mathar, May 21 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 28 01:38 EST 2020. Contains 332319 sequences. (Running on oeis4.)