login
Triangle read by rows in which row n lists n+1 terms, starting with n^5 and ending with n^6, such that the difference between successive terms is equal to n^5 - n^4.
6

%I #13 Dec 17 2016 14:05:24

%S 0,1,1,32,48,64,243,405,567,729,1024,1792,2560,3328,4096,3125,5625,

%T 8125,10625,13125,15625,7776,14256,20736,27216,33696,40176,46656,

%U 16807,31213,45619,60025,74431,88837,103243,117649,32768,61440,90112,118784,147456

%N Triangle read by rows in which row n lists n+1 terms, starting with n^5 and ending with n^6, such that the difference between successive terms is equal to n^5 - n^4.

%C The first term of row n is A000584(n) and the last term of row n is A001014(n).

%C The main entry for this sequence is A159797. See also A163282, A163283 and A163284.

%C Row sums give A163275. - Omar E. Pol, Mar 18 2012

%H G. C. Greubel, <a href="/A163285/b163285.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%e Triangle begins:

%e 0;

%e 1,1;

%e 32,48,64;

%e 243,405,567,729;

%e 1024,1792,2560,3328,4096;

%e 3125,5625,8125,10625,13125,15625;

%e 7776,14256,20736,27216,33696,40176,46656;

%e 16807,31213,45619,60025,74431,88837,103243,117649;

%e 32768,61440,90112,118784,147456,176128,204800,233472,262144;

%e 59049,111537,164025,216513,269001,321489,373977,426465,478953,531441;

%e 100000,190000,280000,370000,460000,550000,640000,730000,820000,910000,1000000;

%t rw[n_]:=Range[n^5,n^6,n^5-n^4]; Join[{0,1},Flatten[Array[rw,10]]] (* _Harvey P. Dale_, Mar 18 2012 *)

%o (PARI) A163285(n, k)=n^5 +k*(n^5 -n^4) \\ _G. C. Greubel_, Dec 17 2016

%Y Cf. A000584, A001014, A085538, A159797, A162611, A162614, A162622, A163282, A163283, A163284.

%K easy,nonn,tabl

%O 0,4

%A _Omar E. Pol_, Jul 24 2009