|
|
A163285
|
|
Triangle read by rows in which row n lists n+1 terms, starting with n^5 and ending with n^6, such that the difference between successive terms is equal to n^5 - n^4.
|
|
6
|
|
|
0, 1, 1, 32, 48, 64, 243, 405, 567, 729, 1024, 1792, 2560, 3328, 4096, 3125, 5625, 8125, 10625, 13125, 15625, 7776, 14256, 20736, 27216, 33696, 40176, 46656, 16807, 31213, 45619, 60025, 74431, 88837, 103243, 117649, 32768, 61440, 90112, 118784, 147456
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
The first term of row n is A000584(n) and the last term of row n is A001014(n).
The main entry for this sequence is A159797. See also A163282, A163283 and A163284.
Row sums give A163275. - Omar E. Pol, Mar 18 2012
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
|
|
EXAMPLE
|
Triangle begins:
0;
1,1;
32,48,64;
243,405,567,729;
1024,1792,2560,3328,4096;
3125,5625,8125,10625,13125,15625;
7776,14256,20736,27216,33696,40176,46656;
16807,31213,45619,60025,74431,88837,103243,117649;
32768,61440,90112,118784,147456,176128,204800,233472,262144;
59049,111537,164025,216513,269001,321489,373977,426465,478953,531441;
100000,190000,280000,370000,460000,550000,640000,730000,820000,910000,1000000;
|
|
MATHEMATICA
|
rw[n_]:=Range[n^5, n^6, n^5-n^4]; Join[{0, 1}, Flatten[Array[rw, 10]]] (* Harvey P. Dale, Mar 18 2012 *)
|
|
PROG
|
(PARI) A163285(n, k)=n^5 +k*(n^5 -n^4) \\ G. C. Greubel, Dec 17 2016
|
|
CROSSREFS
|
Cf. A000584, A001014, A085538, A159797, A162611, A162614, A162622, A163282, A163283, A163284.
Sequence in context: A046304 A114447 A090052 * A036329 A014614 A046371
Adjacent sequences: A163282 A163283 A163284 * A163286 A163287 A163288
|
|
KEYWORD
|
easy,nonn,tabl
|
|
AUTHOR
|
Omar E. Pol, Jul 24 2009
|
|
STATUS
|
approved
|
|
|
|