%I #20 Oct 07 2024 03:22:47
%S 1,48,2256,106032,4982376,234118656,11001086208,516933992448,
%T 24290397127896,1141390199234256,53633194222120752,
%U 2520189436004377296,118422087020288430408,5564578001118314478240,261475955285477822620512,12286587622406034842484384,577338880885792093267553208
%N Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
%C The initial terms coincide with those of A170767, although the two sequences are eventually different.
%C Computed with Magma using commands similar to those used to compute A154638.
%H G. C. Greubel, <a href="/A163266/b163266.txt">Table of n, a(n) for n = 0..595</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (46,46,46,-1081).
%F G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).
%F a(n) = 46*a(n-1)+46*a(n-2)+46*a(n-3)-1081*a(n-4). - _Wesley Ivan Hurt_, May 10 2021
%t CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(1081*t^4-46*t^3-46*t^2 - 46*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[ {46,46,46,-1081}, {48,2256,106032,4982376}, 20] (* _G. C. Greubel_, Dec 12 2016 *)
%t coxG[{4, 1081, -46}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, May 01 2019 *)
%o (PARI) my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(1081*t^4-46*t^3 - 46*t^2-46*t+1)) \\ _G. C. Greubel_, Dec 12 2016
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-47*x+1127*x^4-1081*x^5) )); // _G. C. Greubel_, May 01 2019
%o (Sage) ((1+x)*(1-x^4)/(1-47*x+1127*x^4-1081*x^5)).series(x, 20).coefficients(x, sparse=False) # _G. C. Greubel_, May 01 2019
%o (GAP) a:=[48,2256,106032,4982376];; for n in [5..20] do a[n]:=46*(a[n-1] +a[n-2] +a[n-3]) -1081*a[n-4]; od; Concatenation([1], a); # _G. C. Greubel_, May 01 2019
%K nonn,easy
%O 0,2
%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009