login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163266 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I. 1
1, 48, 2256, 106032, 4982376, 234118656, 11001086208, 516933992448, 24290397127896, 1141390199234256, 53633194222120752, 2520189436004377296, 118422087020288430408, 5564578001118314478240, 261475955285477822620512 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The initial terms coincide with those of A170767, although the two sequences are eventually different.

Computed with MAGMA using commands similar to those used to compute A154638.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..595

Index entries for linear recurrences with constant coefficients, signature (46, 46, 46, -1081).

FORMULA

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).

MATHEMATICA

CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(1081*t^4-46*t^3-46*t^2 - 46*t+1), {t, 0, 20}], t] (* or *) Join[{1}, LinearRecurrence[ {46, 46, 46, -1081}, {48, 2256, 106032, 4982376}, 20] (* G. C. Greubel, Dec 12 2016 *)

coxG[{4, 1081, -46}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 01 2019 *)

PROG

(PARI) my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(1081*t^4-46*t^3 - 46*t^2-46*t+1)) \\ G. C. Greubel, Dec 12 2016 *)

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-47*x+1127*x^4-1081*x^5) )); // G. C. Greubel, May 01 2019

(Sage) ((1+x)*(1-x^4)/(1-47*x+1127*x^4-1081*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019

(GAP) a:=[48, 2256, 106032, 4982376];; for n in [5..20] do a[n]:=46*(a[n-1] +a[n-2] +a[n-3]) -1081*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, May 01 2019

CROSSREFS

Sequence in context: A049678 A162913 A156093 * A163829 A164348 A164693

Adjacent sequences:  A163263 A163264 A163265 * A163267 A163268 A163269

KEYWORD

nonn

AUTHOR

John Cannon and N. J. A. Sloane, Dec 03 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 12:18 EDT 2019. Contains 328160 sequences. (Running on oeis4.)